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ABSTRACT. A food chain consisting of species at three
trophic levels is modeled using Beddington-DeAngelis func-
tional responses as the links between trophic levels. The dis-
persal of the species is modeled by diffusion, so the resulting
model is a three component reaction-diffusjon system. The
behavior of the system is described in terms of predictions of
extinction or persistence of the species. Persistence is char-
acterized via permanence, i.e., uniform persistence plus dissi-
pativity. The way that the predictions of extinction or per-
gistence depend on domain size is studied by examining how
they vary as the size (but not the shape) of the underlying
spatial domain is changed.

KEY WORDS: Reaction-diffusion, food chains, area ef-
fects, predator-prey, Beddington-DeAngelis, persistence, per-
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1. Introduction. In this article we will examine how the size of
the underlying spatial environment affects the persistence or extinc-
tion of species in a community consisting of three trophic levels. We
use a reaction-diffusion model in which the links between trophic lev-
els are given by functional responses of Beddington-DeAngelis type.
This type of model has been used to some extent in theoretical ecol-
ogy. Some background results on Beddington-DeAngelis type models
are given in Beddington [1975], Cantrell and Cosner [1998], Cantrell
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and Cosner [2001], DeAngelis et al. [1975], Ruxton et al. [1992]. We
use the idea of permanence, i.e., uniform persistence plus dissipativity,
to characterize persistence. Permanence can be interpreted as meaning
that the system has a global attractor for nontrivial nonnegative solu-
tions which is bounded away from the boundary of the positive cone.
To show permanence in the context of our model requires, among other
things, that each species is able to invade the system if the species at
lower trophic levels are present. Mathematically, this criterion of inva-
sibility means roughly that points in the w-limit of certain subsystems
are unstable with respect to perturbations in which the density of a
species not represented in the subsystem is positive. This instability is
characterized by the sign of the principal eigenvalue of an associated
elliptic operator being positive. To give explicit criteria for permanence
in terms of the coefficients of the system we need estimates on the lo-
cation of the w-limit sets of subsystems. These estimates are obtained
via methods based on sub- and super-solutions.

The model we study has the form

(1.1)

Ajuv
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Uy = (di/1*)Au + u(l — u) 1T BuiCo
RN Eyuy Asvw —
Up = U/ JLAV - — 9
R T T Blut G 1+ B+ Cw
Eyvw

— 2 it e i
wy = (dg/I*)Aw + 1T Byo 1 Cyw Dyw in Qg x (0, 00),
u=v=w=0 on 9 x (0, co).

(We assume that u and t have been rescaled so that the growth rate
and carrying capacity in the logistic term of the first equation are both
equal to one).

The system (1.1) is obtained by starting on the domain Q = IQ,
ie., Q= {(lz,ly): (z,y) € Qo} or the equivalent in three dimensions,
then scaling out the length parameter [ by a change of independent
variables. Thus, our goal is to study how the dynamics of (1.1) are
affected by [. The terms forming the links between the trophic levels
are functional responses of the form

Auv

(1.2) T¥ButOv
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proposed by DeAngelis et al. [1975] and Beddington [1975]. These
responses can be derived from mechanistic consideration (Ruxton et
al. [1992]) and are reasonably well known among theoretical ecologists
but less so among mathematicians. The term Bu in the denominator
reflects the time required to handle a prey item, as in the Holling type
II functional response (see Freedman [1980], Ruxton et al. [1992]). The
term Cv represents mutual interference by predators. In Cantrell and
Cosner [2001], we studied a two-species system using the Beddington-
DeAngelis functional response. It turns out that such systems can
have periodic orbits (Cantrell and Cosner [2001]), which suggests that
in general an analysis of the equilibria of the system (1.1) may not
adequately characterize the dynamics. That is one of the reasons why
we have taken the viewpoint of permanence in studying persistence in
(1.1). -

There has been some treatment of diffusive food chain models
(Cantrell and Cosner [1996], [1998], Feng [1994]), but these studies
do not address the effects of the size of the underlying environment on
the interactions. Permanence has been used in the context of models
involving three interacting species (Avila and Cantrell [1997], Cantrell
et al. [1993b], Cantrell and Ward, Jr. [1997]) and our application of the
concept is similar in spirit to that in Cantrell et al. [1993b]. For gen-
eral background on permanence, see Hutson and Schmitt [1992]. As in
Cantrell et al. [1993b)], we use ideas based on sub- and super-solutions
to obtain estimates on the asymptotic behavior of subsystems.

There have been many studies of the effects of habitat size on the
number of species which are expected to be seen in a community;
see Cantrell and Cosner [1994] and the references therein. However,
almost all such studies are based on models where there are no direct
interactions between species. The typical approach is to assume that
certain parameters such as the probability of colonizing a habitat patch
are distributed among species according to certain rules and then to
count the number of species whose presence in the habitat is predicted
by their parameter sets; see the discussion in Cantrell and Cosner
[1994].

What is new in this paper is the use of models such as (1.1) with
specific tight interactions between trophic levels to study area effects
in a community. The paper is structured as follows: some mathemat-
ical background is given in Section 2, with additional details in the
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Appendices; the models are analyzed in Section 3 and our conclusions
are summarized in Section 4.

2. Mathematical background. Our approach to the analysis of
(1.1) is based on the notion of permanence (i.e., uniform persistence
and dissipativity) for dynamical systems (Cantrell et al. [1993a], Hale
and Waltman [1989], Hutson and Schmitt [1992]). The system (1.1)
can be viewed as generating a semi-dynamical system on appropriate
spaces of functions. A dynamical or semi-dynamical system on a space
with a positive cone is permanent if all solutions are eventually bounded
away from infinity and from the boundary of the positive cone, and the
bounds are independent of the initial data. For the system (1.1) (and
analogons reaction-diffusion systems) permanence irmplies that each
component is eventually bounded above and below by functions that
are positive on . In particular, if (1.1) is permanent, then there exists
functions u, v, w, @, ?,% of z such that 0 < u(z) < u(z,t) < @(z) on
Q for any solution (u,v,w), provided t is large enough, and similarly
v(z) < v(z,t) < 9(z) and w(z) < w(z,t) < @(z) for large ¢t. (This
point is discussed in detail in Cantrell et al. [1993a]; see also Hutson
and Schmitt [1992]).

Establishing that a system such as (1.1) is permanent typically re-
quires a stability analysis ol equulibria and other steady-states ot sub-
systems where one or more components are zero. For permanence to
hold, it is necessary for any steady-state where one or more components
are zero to be unstable relative to at least some perturbations where
some of those components are positive. This is not sufficient for perma-
nence to hold; that also requires a structural condition on the semiflow
restricted to the boundary of the positive cone. A brief discussion of
permanence and a theorem giving sufficient conditions for permanence
are found in Appendix A; also see Avila and Cantrell [1997], Cantrell et
al. [1993a], [1993b], [1996], Hutson and Schmitt [1992] for more detailed
discussions. Under reasonable hypotheses, which are met by (1.1), per-
manence implies the existence of a positive equilibrium. We shall not
state a formal result to that effect; see Cantrell et al. [1993a], Hutson
and Schmitt [1992] for detailed discussions.

To establish the instability of equilibria we will want to consider eigen-
value problems arising from the linearization of (1.1) or its subsystems.
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The solution u = 0 to a reaction-diffusion equation

(2.1)
us = dAu + p(z)u + (higher order terms in u) in Q x (0, c0)
u=0 on 6 x (0, 00)

is linearly unstable if o1(d, p(z)) > 0 where o1(d, p(z)) is the principal
eigenvalue of the problem

02 dbyp+playp =0y inQ
' P»=0 on 0.

If p(z) is continuous and positive on an open subset of (), then the
eigenvalue problem

(2.3) —Ad = Ap(z)p inQ
=0 on 0

has a positive principal eigenvalue A} (p(z)), see Cantrell and Cosner
[1989], [1991], DeFigueiredo [1982], Hess and Kato [1980], Manes and
Micheletti [1973], Senn [1983]. (Principal eigenvalues are characterized
by their associated eigenfunctions being positive on §2). The eigenvalues
in (2.2) and (2.3) are related: o1(d,p(z)) > 0 if and only if M (p(2) <
1/d. (This is stated formally in Lemma B.4 of Appendix B). The
eigenvalue Af (p(z)) can be used to give criteria for the existence of
a positive equilibrium for a single reaction-diffusion equation. This is
done for the diffusive logistic equation in Cantrell and Cosner [1989)],
[1991]. Analogous results for an equation arising in the analysis of (1.1)
are given in Appendix B.

Determining when solutions to (1.1) are bounded away from zero will
be the main goal of the mathematical analysis of the next section.
However, it is easy to obtain global asymptotic upper bounds on
solutions to (1.1), from which dissipativity follows in stronger norms
via parabolic regularity theory, as in Cantrell et al. [1993a], Hutson and
Schmitt [1992]. We have

Lemma 2.1. There are positive constants ug, Vo, Wo Such that any
nonnegative solution of (1.1) satisfles 0 < u < wp, 0 < v < g,
0 < w < wy fort sufficiently large.
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PRrooF. For any solution to (1.1), u is a subsolution to the equation

21) ye = (di/1)Ay + (1 —y)y in Qo x (0,00)
=0 on 9 x (0, co).

By the results of Cantrell and Cosner [1989], all positive solutions of
(2.1) either approach zero as ¢t — oo or approach a unique positive
equilibrium § < 1. Thus, for large ¢, 0 <u < 1. If0<u < 1, then v is
a subsolution to

(2.2)
Y = (da/1%) Ay + ([B1/(1 + By + C1y)] — Dy)y in Qg x (0, 00)
y=0 on 9 x (0, 00).

By the results in Appendix B, all positive solutions to (2.2) either
approach zero or approach a unique positive equilibrium 7. By the
strong maximum principle § < [E; — Dy(1 + B1)]/C1Dy if § exists.
Thus, for large t, 0 < v < vy where vp is any positive number larger
than [Ey — Dy(1+4 B;)]/C1Ds. Finally, if v < vg then w is a subsolution
to

(2.3)
ar e A NI2NA L (T o 11 T . N M N o LA N
b TT WO Y ey 1 \[APLVU - L eguy 1 VY ) LB jY A usy A \Vy Yy
y=0 on 8% x (0, 00).

The same sort of analysis as we used for (2.2) implies that for large ¢
we have w < wyp for any sufficiently large positive constant wg.

3. Analysis of the models. We shall now analyze how the
asymptotic behavior of (1.1) depends on the scaling parameter I. It will
turn out that for ! sufficiently small none of the populations can persist,
but that under suitable conditions on the parameters, persistence will
become possible as [ increases. If persistence is possible for some of
the populations, then as [ increases the model will predict persistence
of the lowest trophic level first; as ! increases further the model will
predict persistence of the next lowest trophic level, and so on, up the
trophic stack or food chain.

We begin with the observation that (1.1) cannot predict persistence
at any given trophic level if it predicts extinction at a lower level. The
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reason for this is that the only growth terms in the equations for the
populations v and w at the higher trophic levels are those arising from
predation on the population at the next lowest level. This can be
described mathematically as follows:

Lemma 3.1. Suppose that
(3.1) 12 < diAf(1).

Then all components of all nonnegative solutions of (1.1) tend to zero
as t — 00. :

PROOF. (Recall that A] (1) is the principal eigenvalue of

—A¢ = A(,ZS in Qo
¢=0 ondQ.)

If 12 < dyA] (1), then by the results in Cantrell and Cosner [1989], all
nonnegative solutions to

(3.2) z = (d1 /1) Az +2(1—2z) in Qg x (0,00)
’ z=0 on 89 x (0, 00)

must approach zero as t — oo. If u satisfies (1.1) then u is a

subsolution to (3.2), so choosing z so that z(z,0) = u(z,0) in (3.2)

yields 0 < wu(z,t) < z(z,t) so, since z — 0 as ¢ — oo, we must

have © — 0 as t — oo. Hence, for large £, we have u < Dy/2E; so

that Eju/(1 + Biu + Civ) < Ey(D3/2E;) = D,/2, and hence v is a

subsolution to

(3.3) ye = (dz/1*)Ay — (D2/2)y in Qp x (0,00)
y=0 on 88 % (0, 00).

Since the coefficient of y in (3.3) is negative, all solutions must approach

zero as t — oo. Thus, if we choose y to satisfy (3.3) with y(z,0) =

v(z,0), then 0 < v(z,t) < y(z,t) for all t. Since y — 0 as t — oo, we

see that v — 0 as well. A similar argument shows that since v — 0 as

t — oo, then w — 0 as £ — oo.
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If 12 > dy A{ (1), then (3.2) has a unique positive equilibrium which is
globally attracting among positive solutions; see Cantrell and Cosner
(1989]. If v = w = 0, then u satisfies (3.2), so in that case the species on
the lowest trophic level can persist by itself. We now consider whether
the species on the second trophic level can persist. Thus we consider
the subsystem

(3.4)
Ajuv
- 2 —_—) -
up = (di/1°)Au + u(l — u) TTBuiC
ve = (da/P)Av + [ —2% D)o in Qo x (0 o)
14+ Biu+ Civ ’
u=v=0 on 89 x (0, 00).

We have the following.

Lemma 3.2. If
(3.5) diAT (1) < 1

and (u,0,0) is a solution to (1.1) with u > 0, w # 0 at t = 0, then
u — U as t — oo where U is the unique positive equilibrium of (3.2).

If (3.5) holds, then (3.4) is permanent if and only if

(3.6) sup ([E15/(1 + By@)] — Da) > 0
and
(3.7) doAT ([Br/(1 4 B13)] — D,) < 12,

If inequality (3.8) fails to hold or if (3.6) holds but (3.7) is reversed,
then v — 0 as t — oo.

Remark. Since 7 is an equilibrium of (3.2), it follows from the strong
maximum principle that & < 1 so (3.6) holds only if
(3.8) [E1/(1 + B1)] ~ D > 0.
If (3.6) holds, then eigenvalue comparison results imply

M ([Br@/(1+ Byw)] - Dy) > X ([Ex/(1+ B1)] - D2)
=X ()/{[E1/( + B1)] - D2},
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80 (3.7) holds only if

doAt (1)
B+ By = D5 <

(3.9)
Hence (3.8) and (3.9) are necessary for permanence.

Proof of Lemma 3.2. If (3.5) holds, then @ exists and any solution
(u,0,0) with w > 0, u % 0 has u — 7 as t — oo by results from Cantrell
and Cosner [1989]. If (3.6) holds, then A ([E1@/(1+B1@)] — Dy) exists.
If (3.5) and (3.7) hold, then Lemma B.4 implies oq(d;/I%,1) > 0 and
o1(d2/12,[E14/(1 + B1)] — D2) > 0, so that the equilibria (0,0) and
(@,0) of (3.4) are locally unstable and permanence follows for (3.4)
as in Theorem 5.3 of Cantrell et al. [1993a]. Alternatively, since the
set w(8Yp) for (3.4) conmsists of (0,0) and (%,0) with all solutions of
the form (0,v) approaching (0,0) and all solutions of the form (u,0)
with u 5 0 approaching (@, 0), permanence follows from acyclicity via
Theorem Al.

If (u,v) satisfies (3.4), then u is a subsolution to (3.2), so for any
€ > 0, we have u < (1 + €)@ for sufficiently large t. Thus, for large
enough £, v is a subsolution to

(3.10)
E1(1+€)ﬂ
= (do/I1?)A
yr = (d/1) y+[1+B1(1+a)a+Cly
y=0 on 89 x (0, co),

—-Dz]y in Qg x (0, 00)

for any given ¢ > 0. If (3.6) is reversed, then [Ei(1 + &)a/(1 +
Bi(1 + €)@)] — D2 < 0 for € > 0 sufficiently small, so y — 0 as
t — oo for any solution of (3.10), and hence v — 0 as t — oo. If
equality holds in (3.6), then for any § > 0 we can choose £ so that
[E1(1 + €)a/(1 + Bi(1 + €)@)] — D2 < 6, so doAf ([Ba(1 +€)a/(1 +
Bi(1 + €)a)] — D3) > doAF (6) = (d2/8)Af (1). For & small enough, we
will have

(3.11) dz}\—f ([El(l -+ E)ﬁ/(l -+ Bl(l + E)l_l,)] —_ Dz) > 2.

Similarly, if (3.6) holds but (3.7) is reversed, then continuity of A] with
respect to the weight function (i.e., the potential) implies (3.11) for &
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small. If (3.11) holds, then by Lemma B.4 oy(ds/1?, [E1(1 + &)a/(1 +
Bi(1 4+ €)@)] — Dy) < 0. It follows that the solution y = 0 to (3.10) is
asymptotically stable. Since v is a subsolution to (3.10) and v > 0, we
must have v — 0 as t — oo.

Finally if equality holds in (3.7) we still cannot have permanence.
Permanence implies the existence of a positive equilibrium (u*,v*)
(see Cantrell et al. [1993a], Hutson and Schmitt [1992]). If (u*,v*)
is a positive equilibrium to (3.4), then u* is a strict subsolution to
the equilibrium equation for (3.2). Since any large constant is a
supersolution and there is a unique positive equilibrium @ for (3.2)
we must have u* < @. Also, v* > 0 on {g. The equation for v* is

]

0 in O
vl sdg

v*=0 on 6Qy.

Since v* > 0 on €, the principal eigenvalue o1(da/!?, [Eru*/(1 +
Biu* 4+ Cyv*)] — D) must be zero. (The eigenfunction would be
a multiple of v*). But @ > v* and v* > 0, so E14/(1 + B1@) >
Eju*/(1 4+ Biu* + C1v*) in Qq. Thus, standard eigenvalue comparison
results imply

IS = NI N1 -\

G —vyug/v, e’ /(L Dru” + C1v’)) — Do)
<o (dz/lz, [El‘ﬂ/(l + B]_’L'L)] — Dz);
by Lemma B.4 this last inequality implies that (3.7) must hold.

We now consider the relations between hypotheses (3.5), (3.6) and
(3.7).

Lemma 3.3. There is a number I* > 1/d;\] (1) such that (3.6) and

(3.7) cannot hold (so (3.4) cannot be permanent) unless I > I*. If (3.8)
holds and [ is sufficiently large, then (3.6) and (3.7) are satisfied so that
(3.4) is permanent.

Remark. For I < 4/diAT(1), none of the components of (1.1) can
persist. For 1/d; AT (1) < I < I*, u will persist but v and hence w will
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not. Only for | > I* can v persist. Thus, as the size of the habitat
increases, we should first expect no population to persist, then only
the population on the first trophic level, then perhaps the populations
on the first two trophic levels.

PROOF. We know that for any fixed [ > 4/d; AT (1) the problem (3.2)
has a unique equilibrium @(l). By the results of Cantrell and Cosner
[1989], @(!) depends continuously on the parameter [, is increasing with
respect to [, and satisfies (1) — 0 in C+*(() as 1 | 4/d1 AT (1). (The
last result follows from the bifurcation theoretic analysis in Cantrell
and Cosner [1989]. If I < 4/diAf(1), then u — 0 as ¢t — oo so
v - 0 as t — oo also). Thus, there is a number &* > 0 such that
if 4/diAT(1) < I < 4/diAT(1) + &%, then 4(l) < Dy/2E; so that
(3.6) fails. Hence we may take I* to be any number in the interval
(\/dl)\'f(l), \/dl)\f'(l) + £*). By the results of Cantrell and Cosner
[1989)], @(l) — 1 as | — oo, uniformly on any subdomain Q' of Qg with

Q' C Q. Thus, if (3.8) holds, then (3.6) holds for ! large. If (3.6)
holds for some value of I, then it holds for all larger values of | since
(1) is increasing in I. The eigenvalue AT ([E1@(l)/(1 + Bya(l))] — D2)
thus exists for | sufficiently large, and it is decreasing in [ since
[E1a(l)/(1 + Byu(l))] — D, is increasing in . Since the left side of
(3.7) decreases in ! while the right side increases without bound as
[ — o0, (3.7) must hold for [ sufficiently large.

We have an analogous result relating the conditions for permanence
in (1.1) for those needed in (3.4).

Lemma 3.4. Suppose that, for some [, (3.6) and (3.7) hold. There
is a number I** satisfying I** > inf{l : inequalities (3.6) and (3.7) are
satisfied} so that for | < 1**, w — 0 ast — oo in (1.1).

Remark. It follows that (1.1) cannot be permanent unless [ exceeds
the threshold value needed for permanence in (3.4) by some positive
amount.
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Proor. Note that if (3.6) fails or (3.7) is reversed, then v — 0 as
t — 00, so w — 0 as t — o0, by essentially the same arguments used
to show v — 0 as t — oo in Lemma 3.1. Suppose that (3.6) holds and
(8.7) is satisfied for at least some value of . Note that the analysis in
Cantrell and Cosner [1989] implies that the equilibrium @(l) of (3.2) is
increasing with respect to [, so [E1%/(1 + B1@)] — Dy is also increasing
in 1, so A\J ([E1@/(1 + B1@)] — D) is decreasing. Hence (3.7) holds for
I > Iy but fails for [ < I where l; satisfies

(3.12) doAT ([Bra(l)/(1+ Bua(l)] — Do) = .

Recall that for any € > 0 and ¢ sufficiently large, v is a subsolution
to (3.10). By Theorems B.1 and B.2, the problem (3.10) has a unique
positive equilibrium F(l,e). Multiparameter bifurcation theory, e.g.
as in Alexander and Antman [1981], implies that §(l,e) will depend
continuously on ! and e. A bifurcation analysis of the type used in
Cantrell and Cosner [1989] shows that §(l, 0) branches from 0 at [ = ;.
Thus, if (I,€) is sufficiently close to (;,0), we have §(l,e) < D3/3FEs.
Hence we may choose I** > I; and € > 0 so that §(l,&) < D3/3E; for
Iy <l <I*. If§(l,e) < D3/3Ej, then since v is a subsolution to (3.10)
for large t, we have v < (1 + 8)%(l,€) for any § > 0 if ¢ is sufficiently
large. For § = 1/2 we get v < D3/2Fj; for large t. It then follows that
for large £, w is a subsolution to

(3.13) = (da/I?)Az — (D3/2)z in o x (0,00)
' z—O on 9€g x (0, 00).

Since the coefficient of the zero order term in (3.13) is negative, all

solutions of (3.13) must approach zero as t — oco. Since w > 0 is a

subsolution, w —+ 0 as t — oo provided [ < [**,

Remark. We have established that there are numbers [* and [** such
that (3.4) cannot be permanent if / < I* and (1.1) cannot be permanent
for | < I**. (If in fact (3.4) is permanent for some I/, then we have I** >
I*). We will devote the remainder of the analysis to finding conditions
under which (1.1) is necessarily permanent for large [. We already know
that (3.6) and (3.7) must hold for the system to be permanent. (Note
that (3.7) is equivalent to [ > I; where [; satisfies (3.12)). In this case
the subsystem (3.4) is permanent and hence admits a compact global
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attractor (for initial data (ug,vp) with uo(m)go, vo(:zz);éO) in the
interior of the positive cone in [C}(Q)]? which is bounded away from
the boundary of the cone. Let us denote this attractor by A(l). The
omega limit set of the boundary of the positive cone in [C3(Q)]® under
solution trajectories for (1.1), w(8Y,) in the notation of Appendix A,
is then given by {(0,0,0), (@(),0,0), A(l) x {0}} and consequently is
acyclic. Moreover, the semiflow in [C3(€0)]® corresponding to (1.1)
is dissipative and hence Theorem A.1l is in principle applicable. The
condition W*(A(l) x {0})NYp = @ will be sufficient to assert that (1.1)
is permanent, and we have the following result.

Theorem 3.5. Suppose that (3.5), (3.6) and (3.7) hold. Let
A(l) be the compact global attractor whose existence is guaranteed by
permanence in Lemma 3.2. Then (1.1) is permanent provided there is
a constant ¢ > 0 with the property that if (u,v,0) € A(l) x {0} and
o € R are such that ‘

(ds /1) Avp + ( Bpv

1+ Bov

—~D3>’1,b= U?,b in QQ
¥=0 on Qg

(3.14)

admits a solution v > 0 in Qq, then o > c.

Proor. The condition o > ¢ in the statement of the result may be
interpreted as uniform invasibility of the w component of solutions to
(1.1) over A(l) x {0}. We may establish W*(A(l) x {0}) NYy = @ by
exploiting Lemma, 4.2 of Cantrell and Cosner [2001] in much the same
way as was done in the proof of Theorem 4.1 in Avila and Cantrell
[1997]. A more formal treatment of the concept of a uniformly repelling
set is given in Freedman and Ruan [1995].

Our goal is to identify conditions on the system parameters under
which (1.1) becomes permanent as | — oo. In order to verify the
hypotheses of Theorem 3.5 to assert the permanence of (1.1), we
will need lower bounds on the v component of (u,v,0) € A(l) x
{0} that we can track as [ — oo. Our approach to establishing
such bounds is as follows. Start with arbitrary initial data of the

> >
form (uo,vo,0), with uo(z)#0, vo#£0, and let (u,v,0) denote the
corresponding solution of (1.1). (Note that (u,v) is then a solution
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of (3.4)). Establish an asymptotic upper bound on u. Use this bound
to establish an asymptotic upper bound on v from which an asymptotic
lower bound on u can be derived under appropriate conditions on the
system parameters. Then employ the asymptotic lower bound on u to
obtain a corresponding asymptotic lower bound on v under appropriate
conditions on the system parameters. Since ug and vg are arbitrary,
this last provides a lower bound for v if (u,v,0) € A(l) x {0} for some
u. Finally we may employ Theorem B.3 to track the corresponding o
in (3.14) as [ increases to satisfy the hypotheses of Theorem 3.5 under
suitable conditions on the parameters of the system (1.1).

We have observed that u is a lower solution to (3.2) so that for
any € > 0, we have u < (1 + €)% for large ¢, where @ is the positive
equilibrium of (3.2), and hence % < 1 by the strong maximum principle.
Also, for large t, v is a subsolution of (3.10) and hence of

. ds Ei(1+¢)z )
(3.15) 2z = (lz)Az TYB,(075+Coz Doz in Qg % (t,00)
z2=0 on g x (t,0)
for ¢ large. Since
o
—~Dy>0
14+ By 2>

and

Eqa(l) Ey
+f ARG + -
b \/d2A1 (1 + Bya(l) D2> ” \/dz)‘l (1 + B, Dz) ’

all nonnegative nontrivial solutions to (3.15) converge to the unique
positive equilibrium solution of (3.15). The maximum principle guar-
antees that the equilibrium solution is less than [(E7 — B1D2)(1+¢€) —
Dy)/D,C; everywhere in Q. As a consequence, v < (1 + 8)([(E1 —
B1D3)(1 + €) — Dy]/DyC4) for any 6 > 0 and € > 0 for ¢ sufficiently
large. Hence for any 7 > 0, we have v < (14n)((E1—B1Dy—D3)/D2C4)
for ¢ sufficiently large.

Returning to the u equation we now find that, for ¢ sufficiently large,
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u is an upper solution to

(3.16)
(& A1y((14n)[(Er —B1D3 —D3)/DCi))
““(ﬁ)Ay+”Lﬂ”“1+o¢a+mu&eﬂub—uaﬂ%om
in Qo X (£, 00)
y=0 on € X (t,OO).

Now

A1((1 +n)[(Br — BiDy — D3)/D3Ch))
14+ C1((1 4+ n)[(E1 — B2D; — D3)/DCh])

_ (14 mAi(Er — BiDy — Dy)
C1(Dz + (14 n)(E1 — B1Dy — Dy))

and hence

Ay[(1 +n)((B1 — B1.Dy — D3) /Dy Ch)]
1+ Ci[(1 + ) ((E1 — B1Dg — D3)/ Do Cy))

_  (L+n)Ai(Br—BiDy—Ds)
- y<1 C1(Dz + (1 +n)(E1 — B1D, — Dy)) y)

y(l—y) -

It follows from Cantrell and Cosner [1989], for example, that (3.16)
admits a globally attracting positive equilibrium solution which we will
denote by (I, n) provided

317) B> diA} (1 (1 4+ n)A1(E: — BiDy — Dy) )

"~ C1(Da2+ (1 +n)(BL — BiDy — Dy))
To have

A+ (1 B (1 +n)A1(Ey — B1Dy — D5) )
1 Ci(D2+ (1 +n)(E1 — B1 Dy — Dy))

exist as a positive number for small 77 > 0 requires

A1(E1 — B1Dy — Do)
Ci1(Ey — B1D»)

< 1.
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An elementary calculation shows that this inequality is equivalent to
(A1 - C]_)/Al < Dg/(El - B]_D2). Now (36) implies (38), which
implies Dy/(E; — By Ds) < 1. It follows that we must require

Cy Dy

47T EB-BD;

in order to have (3.17) hold for ! large enough. Assuming (3.17) and
(3.18), we may assert that u > (1 — ¥)§(l,n) for 0 < v < 1 for ¢
sufficiently large. Recall that by Lemma 3.3, inequality (3.8) implies
that (3.6) and (3.7) hold for ! sufficiently large.

We now have imposed (3.17) and (3.18), in addition to the assump-
tions (3.6) and (3.7), as being required for the permanence of the (u,v)

(3.18)

subsystem of (1.1). Under these assumptions, we now find v is an upper

solution to

(3.19)
0z dy E,(1-v)g(,n)=z .
7 BT TR B -l + 0 D2 S x (o)
z=0 on 8Qp x (t,00)

for t sufficiently large. Nonnegative nontrivial solutions to (3.19) will
converge to a unique positive equilibrium solution provided that

By (1 - y)maxg(l, n)

(3.20) 14+ Bi(1—y)maxg(l,n) > Ds
and
(3.21) 2> doht ( . fﬁ . >§)(l (717)77) - Dz).

(Note that (3.20) guarantees that

E1(1-a(,7)
A;r<1+191<1 -~ ’D2>

exists as a positive number). It follows from Section 4 of Cantrell and
Cosner [1989] that if €’ is an open subdomain of € such that  C Qo,

then §(I,7n) converges uniformly to
(1 +n)A1(Ey — B1Dy — Dy)
Ol(Dz + (1 —+ 77)(E1 — B1Dqy — Dz))

1- on 0 asl— oo.
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In order for (3.20) to hold for small v and 7 and large .enough I, we
must have

By[1 - (A1(Ey — BiD; — Dy)/Ci(Ey — BiDy))]
1+ B[l — (A1(B1 — B\Dy — Dy)/Ci(E1 — B1Dy))]

(3.22) > D;.

A calculation will show that (3.22) holds if and only if
(3.23) C1 > A

(Notice that (3.23) implies (3.18)).

Now assume (3.23). Let ' be a subdomain of £y with O c Qo.
Choose § € (0,1) so that
(3.24)
E1(5) [1 — (Al(El — B1Dg ~ Dz)/Cl(El - BlDz))}
1+ 31(5) []. - (Al(El — B1Dg — Dg)/Ol(El - BlDz))]

> Ds.

Choose 6’ € (4,1) so that (6')® > &. Then choose 7 > 0 so that if
0<n <,

A+mMA(Er—BiDy—Ds) o (1_A1(E1~31D2~D2))

1—
C1(Dz + (1 +n)(Ey~B1Dy~Dy)) C1(E1—B1Ds)

Next pick I’ large enough so that

(147')A1(Ey — B1Ds — Ds) )
Ci(D2 + (1 +7')(E1 — B1D3 — Dy))

(3.25)  g(l,7) > & (1 -

on @ if I > I'. Since §(l,7) decreases in 7, it follows from (3.25) that
fy<1-—¢,

(3.26) 1 =mgl,mn) >é (1 = (C{Eil(gllilgfgz)l)Z))

on Y for I > 1’ and 0 < i < 7. It follows from (3.24) and (3.26) that
(3.20) holds if I > I", 0<n<n and y< 14"
We may now assert that there is a number [/ > I’ so that if [ > [”,

0<n<7nand 0 <y <1~¢,(3.21) holds. It follows that for [ > 1",
0<np<n and0 <y <1-¢, (3.19) admits a unique globally attracting
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positive equilibrium solution 2(l,7,v). Multiparameter global bifurca-
tion theory (Alexander and Antman [1981]) and the uniqueness of pos-
itive equilibrium solutions to (3.19) guarantee that (I,7,v) — Z(l,n,7)
is continuous as a map from (I”,00) x [0,7] x [0,1 — &) — C&(Q).
Since v is an upper solution to (3.19) for sufficiently large ¢ under the
assumptions (3.6), (3.7), (3.17) and (3.18), we have for any 8 € (0,1)
that v > Bz(l,n,v) provided I > 1", 0 <n<7,0<vy<1—¢ and
t is sufficiently large. By (3.26), Z(l,7,7) is an upper solution to the
elliptic problem

(3.27)
dy

olfs 74 7 - N iy o7 o~ A
E16[1—(A1(By—B1Da—Do)/Cy(By—B1Dy))] p

4 D
14+ B16[1—(A1(E1—B1Dy—D,) /C1(Ey1—B1D2)) |+ Cip 2P

in

p=0 ondQ

for I>10",0<n<n and 0 <vy<1~-¢. By (3.24), thereis " > 1"
so that if [ > I, (3.27) admits a umque positive solution, which we
denote by p(l), with 2(I,n,v) > p(l) on V. Theorem B.3 implies that
I 327 18 an open subdomain of Sz such That 3 C ¢, p(i) converges
uniformly on Q" to the root of

(3.28)
E16[1— (A1(E1 — BiD; — Dy)/Ci (B — B1Dy))]

—~ Dy =10
1+B15[1 — (Al(El — B1Dqy ~ Dz)/cl(El — Bng))} -+ Clp 2

as [ — oo. It is easy to calculate that the root of (3.28) is given by

(El —B1D2)5 [1 - (A1 (E1 —B1 Dy -—Dg)/cl (El -BlDz))] ——
DyCy

We may conclude that there is a number 1) > I/ so that if [ > 1Y),

v > BK on Q" for ¢ sufficiently large. We have now established the
following result.

K=

Lemma 3.6. Suppose that (3.8) and (3.23) hold. For any 5,4 €
(0,1), if Q* is an open subdomain of Qo such that Q" c Qq, then there



EFFECTS OF DOMAIN SIZE 353

is an I*** > l; so that if | > I*** and (u,v,0) € A(l) x {0}, then

. B((B1—B1D2)3[1— (A1(Ex —bBlDZ"D2)/Cl(E1 —B1Dy))| - D)
- Dy C4

>0 on.

Now let [ > I***. Consider

(‘f—j—)Am( By —-Dg)gb:g(l)qs in

399 1+ Byv

(3.29) ¢=0 on 08y
¢>0 in Qg,

where

2:

B((B1—B1Dy)[1— (A1(E1—B1Dy— D) /C1(Ey—B1Dz))]— D)
DyCy

on {1
0 on o\ 0.
We may apply Lemma B.4 to (3.29) and, moreover, A\{[(Eqv/(1 +
Byv)) — Ds] exists as a positive number provided that

Ez_’l_)_

(3.30) e

-~ Dg >0

on an open subset of £g. By the formulation of v, (3.30) will be satisfied
on Q* if § and 3 are close enough to 1, provided

(331) (El—-BlDz)[].—- (Al (E]_-—BlDz— Dz)/Cl(El—'B]_DQ))] — Dy
DyCy
D3
> B~ BaDs’

Inequality (3.31) may be rewritten as

Al) S C1D2 D3

(332) (E1 —_ B1D2 - Dz) (1 - "é;' m
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We may now establish our main result.

Theorem 3.7. Suppose that (3.8), (3.23) and (3.31) hold. Then
(1.1) s permanent for | sufficiently large.

Proor. By (3.30) and (3.31), there is an I**** > [*** so that

1> 1/dsXf [(Bav/(1+ Byw) — Ds] if 1> 1",

For such an [, g(I) > 0 by Lemma B.4. Sincel > {1, (3.4) is permanent.
Let (u,v,0) € A(l) x {0}. Then v > v on Q. So

1> \/dsXf [(Ezv/(1 + Byv)) — D]

and o in (3.14) is positive. Moreover, comparison via integration by
parts yields o > g(I) > 0 if (u,v,0) € A(l) x {0}. Consequently,
Theorem 3.5 implies that (1.1) is permanent.

Biological interpretation. Recall that in (1.1) the growth rate and
carrying capacity of the species on the lowest trophic level are rescaled
to equal one. The terms A; and Aj represent the rates at which the
predators on the second and third trophic levels find their prey. When
predator and prey densities are low, these are the effective rates of
predation. At higher densities the predation rates are affected by the
time required to handle prey, which is represented by the coefficients
B;, and by the extent to which predators interfere with each other,
which is represented by the coefficients C;. The interference described
by the C; terms is the only mechanism of self-limitation on the second
and third trophic levels. The coefficients F; describe the efficiency of
the predators in converting consumed prey into new predators. Finally,
the coefficients D; represent the density-independent death rates for the
predators. (These terms do not produce any direct self-limiting effects).

Condition (3.8) says that the net local population growth rate at low
densities for the species on the second trophic level must be positive
when the species on the first trophic level is at its carrying capacity,
which has been scaled to be 1. If the density of the species on the first
trophic level is held equal to its carrying capacity, then the maximum
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density of the species on the second trophic level is given by the
expression on the left side of (3.31). Condition (3.31) requires that
if the density of the species on the second trophic level were held at
that maximum value, then the net local population growth rate at low
densities for the species on the third trophic level must be positive.
Conditions (3.8) and (3.31) are thus natural. They essentially require
that the species on the second and third trophic levels have low enough
death rates Dy and Djs relative to the size of the ratios E,/B; and
E,/B; which describe the maximum rates of conversion of prey into
new predators. (The units of E; are predators/prey; those of B; are
time/prey since the B;’s represent handling times, so the units of E; /B;
are predators/time). Thus, conditions (3.8) and (3.31) are natural,
since for the system (1.1) to be permanent it is necessary that each
species in the food chain be efficient enough to sustain itself under
ideal conditions.

The condition (3.23) requires that the coefficient C;, describing the
extent that the species on the second trophic level limits its own density
via intraspecific interference, must be relatively large compared with
the maximum rate of prey consumption described by A;. It is not clear
to us whether this condition is natural or whether it is an artifact of
the analysis. Superficially, it seems surprising that self-limitation of
the species on the second trophic level would be needed for persistence
of the species on the third trophic level, since a higher density of the
population on the second level could be expected to benefit the species
on the third. However, the self-regulation term associated with C; can
have a “stabilizing effect” on the interaction between the species on
the first two trophic levels by making it less likely that limit cycles can
occur, i.e., by preventing the “paradox of enrichment” from occurring.
Eliminating the C) term might in some cases lead to oscillations in
the densities of the populations on the first and second trophic levels,
which might cause the density of the population on the second trophic
level to temporarily dip below the density needed to sustain the species
on the third trophic level. Thus it is possible (but not clear) that
some degree of self-regulation by the species on the second trophic
level might be needed for persistence of the species on the third. It
does not appear to be necessary for the species on the third trophic
level to be self-limiting since the coefficient Cy does not enter into any
of the hypotheses required for (1.1) to be permanent on large domains.
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Determining whether or not self-limitation on the second trophic level
is truly relevant for persistence of the entire food chain is an interesting
- topic for further research. :

4. Conclusions. We have obtained conditions for persistence or
extinction in a model for populations at three trophic levels diffusing
through a region with a lethal boundary in the case where the links
between trophic levels are of Beddington-DeAngelis type. Our essential
conclusion is that in those cases where populations at all three levels
can persist in a sufficiently large region, there will be a critical size
for the region below which no population can persist, and above which
the population on the lowest level can persist; there is then a larger
critical size below which the population on the second trophic level
cannot persist but above which the first and second level will persist
together; finally, there is a third still larger critical size below which
the third level cannot persist but above which all three levels persist
together. Thus, the number of species that will be seen increases with
the size of the region. This is consistent with numerous empirical and
theoretical studies in ecology, see Cantrell and Cosner [1994]. The
empirical study described in Fraser and Grime [1997] gives evidence
that the length of food chains may increase in response to increases

in mrivarer neadsiakiveider Fhadk (e dumanaccan fan oo e Jeianioitall 0 Ll
s3Il poemeln pRCTUTULIVALY, SAAGU L, MNCICLICT LD VAl PrUGUleivivy Of waid

species or resource on the lowest trophic level of the food chain. In
our models the average density at equilibrium and the intrinsic rate of
growth from low densities both increase with patch size for the species
on the lowest trophic level if the consumer species on the higher levels
are not present. Since these quantities measure primary productivity
in one sense or another, our theoretical results are consistent with the
empirical observations of Fraser and Grime [1997].

The methods used in this article could also be applied to a Lotka-
Voltera model with three trophic levels, provided that the predators
have logistic self-limitation terms, and the results would be similar.
(Other Lotka-Volterra models are treated in Cantrell and Cosner [1996),
Cantrell et al. [1993a], [1993b], [1996]). However, the requirement
of predator self-limitation seems necessary for our methods to yield
concrete conditions for the persistence of the population at the top
trophic level. The reason is that we need quantitative estimates on
the asymptotic behavior (equivalently on the location of the positive
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attractor) of the system describing the first two trophic levels if we
want to establish persistence in the third trophic level. It is unclear
whether having predator self-limitation is actually necessary or whether
it is needed only because of the limitations of our methods. This issue
merits further investigation.

APPENDIX

A. Preliminaries. Reaction-diffusion models as dynamical
systems: permanence. In this section we shall briefly review ideas
from the theory of dynamical systems and describe how they apply to
the reaction-diffusion system (1.1). All the topics in this Appendix
are discussed in more detail in Avila and Cantrell [1997], Cantrell
and Cosner [2001], Cantrell et al. [1993a], [1993b], [1996] and Cantrell
and Ward, Jr. [1997] and the references therein; see also Hale and
Waltman [1989] and Hutson and Schmitt [1992]. The key idea for us is
permanence, i.e., uniform persistence plus dissipativity. Suppose that
Y is a complete metric space with ¥ = YUY} for an open set Y. We
will typically choose Yp to be the positive cone in an ordered Banach
space. A flow or semiflow on Y under which ¥y and 8Y are forward
invariant is said to be permanent if it is dissipative and if there is a
number £ > 0 such that any trajectory starting in Yo will be at least
a distance € from 8Yy for all sufficiently large t. We shall choose Yy
so that permanence will imply the existence of functions which are
positive on Q and are asymptotic lower bounds on the components of
solutions to the model as t — oo, see Cantrell et al. [1993a], [1993b].

To establish permanence we must choose the space Y and the set Yy
appropriately and then verify the hypotheses of an abstract result on
permanence. A good underlying space for our purposes is [C3()]™
where m = 1,2 or 3 depending on how many components of the
system are being considered. It is well known that reaction-diffusion
systems with smooth coefficients generate semiflows on such spaces, see
Cantrell et al. [1993a], [1993b], Hutson and Schmitt [1992] and Mora
[1983]. The reason for working in [C}(Q2]™ is that the model system has
homogeneous zero boundary conditions so that no solution could ever
be in the interior of the standard positive cone for [C°(Q2)]™. Instead
we use the cone [C3, ()™ = {v € C}(Q) : v > 0in Q,0u/dn <
0 on 8Q}™. This cone has nonempty interior in [CF(2)]™. Because
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every component of the system (1.1) satisfies an equation of the form

(A1) %% = DAy +py

(where p may depend on other components of the system), it follows
from the strong maximum principle that, for any component either y =
Oory>0on and 8y/On < 0 on 8. Thus, the semiflow generated
by (1.1) maps componentwise nonnegative elements of [C3(Q)]™ into
Y = {u € [C}()]™: for each component u; of v, either u; € C§, () or
u; = 0}. We then take Y5 = int Y so that by our choice of Y, we have
Y = {u € [C}(Q)]™: at least one component of u is identically 0,
and all nonzero components are in C3, (€2)}. The strong maximum
principle implies that both Y; and AY; are forward invariant. To
estabhsh dissipativity in Y it suffices to show that nonnegative solutions
to the system are uniformly bounded in [C°(Q)]™ and the system is
dissipative on the standard positive cone in [C°(Q2)]™. Dissipativity
in [C§,(Q)]™ then follows via parabolic regularity. The appropriate
formulation of uniform boundedness in [C°(Q)]™ is that, for any 3 > 0,
there is a B() such that all nonnegative solutions of (1.1) whose initial
data are bounded by § in the norm of [C°({2)]™ must be bounded
in the [C’O(Q)] norm by B(,B) for all t > 0. For dissipativity there
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nonnegative solution of (1.1} is bounded by v for ¢ sufficiently large. A
precise statement of the result that [C%(Q2)]™ dissipativity and uniform
boundedness imply dissipativity in Y is given in Theorem 2.6 of Cantrell
et al. [1993b]. More detailed discussions of why this is true are given in
Cantrell et al. [1993a], Hutson and Schmitt [1992]. It will turn out that
for (1.1), uniform boundedness and dissipativity in [C°({})]™ can be
established via comparison methods based on sub and supersolutions.
Once dissipativity is established, it follows from parabolic regularity
that the semiflow maps bounded sets in Y into sets that are precompact.

To state the result we will use to establish permanence, we will need
a few definitions.

Suppose that Y = Y, U 8Y; is a complete metric space with Yy an
open subset of Y. Suppose further that a semiflow acts upon Y, leaving
both Yy and 8Y, forward invariant. An invariant set M for the semiflow
is said to be isolated if it has a neighborhood U such that M is the
maxima] invariant subset of U. Let w(8Y;) denote the union of the sets
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w(u) over u € 8Yp. (This differs from the standard definition of the
w-limit set of a set but is more convenient for our purposes; see Hale
and Waltman [1989] for a discussion). The set w(8Yp) is said to be
isolated if it has a covering M = U, M}, of pairwise disjoint sets My
which are isolated and invariant with respect to both the semiflow on
8Y, and the semiflow on Y = Y, U 8Yy. The covering M is then called
an isolated covering. Suppose that Ny and Ny are isolated invariant
sets (not necessarily distinct) for some semiflow. The set N; is said to
be chained to Ny (denoted N7 — Np) if there exists u ¢ N; U Ny with
u € W¥(Ny) N W9(Ny). A finite sequence Ny, Ny,... , Ny of isolated
invariant sets is a chain if Ny — Ny — N3 .-+ — Ng. (This is possible
for k = 1if Ny — N;). The chain is called a cycle if Ny = N;. The set
w(BY,) is said to be acyelic if there exists an isolated covering UY_; My
such that no subset of {My} is a cycle. We can now state the theorem
that will be used to establish permanence.

Theorem A.1 (Hale and Waltman [1989]). Suppose that Y is a
complete metric space with Y = Y5 U Yy where Yy is open. Suppose
that a semiflow on Y leaves both Yy and 0Yp forward invariant, maps
bounded sets in Y to precompact sets for t > 0, and is dissipative. If,
in addition,

i) w(0Yp) is isolated and acyclic
and
i) W¢(Mp)NYy = ¢ for all k,

then the semiflow is permanent, i.e., there ezists an € > 0 such that
any trajectory with initial data in Yy will be bounded away from 8Yy by
a distance greater than e for t sufficiently large.

Remarks. The notation used here is different from that of Hale and
Waltman [1989] because of the definition we have given for w(9Yp).
The key issues in applying the theorem are establishing dissipativity
and verifying (i) and (ii). The other hypotheses follow from the gen-
eral theory of parabolic equations and the structure of the system as
described in (A.1). We have already commented on dissipativity. To
establish (i) we will need to analyze in some detail the dynamics of the
subsystems which arise when one or more components of the original
system are identically zero. To establish (ii) we shall examine eigen-
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value problems associated with equations of the form (A.1). Suppose
that My C 0Yp and that y in (A.1) corresponds to a component of the
system which is identically zero on M. Suppose that for all u € My,
the coefficient p in (A.1) evaluated at u is bounded below by pi(z) and
that the principal eigenvalue of

DAG +pr(z)p =0 inQ

(A.2) ¢=0 ondQ

is positive. In that case a solution y of (A.1) which is sufficiently near
M), will be a supersolution for

bz =DAz+tpi(z)z inQ
(A.3) at
z=0 on 99,

but (A.3) has solutions of the form de”*¢(z) which are arbitrarily small
initially and grow in time since ¢ > 0. These solutions can be used in a
comparison argument to show that if y > 0 initially, then y is bounded
away from M. That in turn precludes having y > 0 in W* (M), and
if we can treat all the components that are zero on M}, in this way, we
can establish (ii). This sort of argument is developed in some detail in
Cantrell et al. [1993a], [1993b]; see, for example Lemma 4.2 of Cantrell
et al. [1993b] and the related discussion.

B. Results on single equations. In this section we collect some
basic facts regarding the equation

Ah(z)

(B1)  w=pAvt (W -

D)v in Qg x (0,00)

subject to the homogeneous boundary condition
(B.2) v=0 on Qg X (0, c0).

The analogous results for the diffusive logistic equation are derived
in Cantrell and Cosner [1989], [1991]. In (B.1) u, A, B,C and D are
positive constants and h(z) is a continuously differentiable function
on Qp which is positive in Qp. If B = maxg h(z) and Ah/(1 +
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Bh) < D, then it follows from Hess and Kato [1980] or Manes and
Micheletti [1973] that O is the only nonnegative equilibrium solution to
(B.1)~(B.2). It follows as in Section 2 of Cantrell and Cosner [1989]
that any solution v(z,t) to (B.1)—~(B.2) corresponding to nonnegative
initial data when viewed as a map from (0, c0) to C}(€) converges to
0 as t — o0o. As a result we make the additional requirement upon h
that

Ah (IL‘Q)

for some zp € Qg. Under assumption (B.3), it follows from Hess and
Kato [1980] or Manes and Micheletti [1973] that the linear eigenvalue
problem

_ Ah(z) .
——AZ—-)\(W—D)Z m Qo
z=0 on 80

(B.4)

admits a unique positive eigenvalue \; = A\J[Ah(z)/(1 + Bh(z)) — D]
for which (B.4) has a solution z which is of one sign in Qp. (A1 is
referred to as the positive principal eigenvalue for (B.4). It follows from
DeFigueiredo [1982] that A [Ah(z)/(1+Bh(z))— D] is continuous in h,
relative to the C!(€) topology). Moreover, under assumption (B.3),
if we define f(z,v) by

Ah(z)

1Y) = 15 Bh@) v 00

it is easy to verify that f(z,v) satisfies
(i) f(zo,0) > 0 for some g € Qp;
(ii) (8f/0v)(z,v) < 0 for € Qg and v > 0;
(iif) f(z,v) <0 for z € Q and v > [(4 — DB)h — D]/Cd.

Theorem 2.3 of Cantrell and Cosner [1989] is now applicable and
enables us to describe the dynamics for (B.1)—(B.2) as follows.

Theorem B.1. Consider (B.1)-(B.2) and assume that (B.3) holds.
Let AT [Ah(z)/(1+ Bh(z)) — D] denote the positive principal eigenvalue
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for (B.4). Then (B.1)~(B.2) admits a positive equilibrium solution if

and only if L, AR )
we (0. (P20 p)) ™)

Moreover, we have

(1) i AB(a) .
+H( 2N p))
ne (O’ (’\1(1+Bh(z) D)) )
there is precisely one positive equilibrium solution to (B.1)-(B.2) and it

is globally asymptotically stable with respect to nonnegative nontrivial
solutions of (B.1)—(B.2) when viewed as a steady-state to (B.1)-(B.2).

Ah(z) -t

> A+ S22

- (Al (1+Bh(:1:) D)) ’

the 0 solution to (B.1)~(B.2) is globally asymptotically stable with
respect to nonnegative solutions of (B.1)—(B.2).

(3 TF
il 4y

Suppose now that

we (0.3t (22— ) ™),

and let v* = v*(h, u) denote the globally attracting positive equilibrium
of (B.1)~(B.2) whose existence is guaranteed by Theorem B.1. Then
v* satisfies

AW = ( Ah(z)
(B.5) HEW=\1¥Bh(z) + Cw
w =10 on 9.

- D>w in Qo

We have the following monotonicity result on v*(h, u).

Theorem B.2. Suppose hi1 and hy are continuously differentiable
on Qo with 0 < hy(z) < ha(z) on Qo, and suppose that hy (and hence
ha) satisfy (B.3). Then

@
Ah(z) Ahg(z)
)‘T (1 + Blhl(a:) B D) = /\f(l —I—Bzhg(m) N D)
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with strict inequality whenever hy # ho.

@) If e .
we (0.0t (=) )

then v*(hy, p) < v*(hg, p) with strict inequality in Qo whenever hy #
hy.
(iii) If h; denotes maxg, hi(z) and

me (004 (573 -2) )

then for any pp € (0, p1], v*(hy, p1) < v*(he, p2) with strict inequality
in Qg th1 < hg or Mo < 1.

PrOOF. Part (i) is known from Hess and Kato [1980] or Manes and
Micheletti [1973]. K is an upper solution for (B.5) for any constant
K > [(A— BD)h — D]/CD, and the maximum principle implies that
v*(h, 1) < [(A—BD)h—D]/CD on Q. As a result, parts (ii) and (iii)
follow directly from the method of upper and lower solutions.

Applying a singular perturbation result of DeSanti [1986] as formu-
lated in Cantrell and Cosner [1989], we may also track the behavior of
v*(h, 1) as u tends to 0. Our result is as follows.

Theorem B.3. Suppose that h satisfies (B.3) and that

£< \/(,\;f(-l—g‘ﬁ -D)>—1.

Consider (B.5) for h with u = €2, i.e.,

AR
.__.2 — [ — 3
e“Aw (1 BT O D)w in Qg

w=0 on 0€.

Then if Q' is any subdomain of Qo with & C Qo, v*(k,€2) converges
uniformly on Y to the solution of [ARh/(14+Bh+Cw)]—-D =0 as ¢ tends
to 0; i.e., v*(h,€2) converges uniformly on 0 to [(A—~BD)h—D]/CD.
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PROOF. Let vy = [(A — BD)h — D]/CD and set z = vy — v*(h,€2).
Then z satisfies

Ah(z — vg) ,

— 2 = _— o~ —

(B.6) S A= T Bh+ Ovp—Cs D~ w) in§
z=vy on Of.

We apply the aforementioned singular perturbation result (Lemma 4.6
in Cantrell and Cosner [1989]) to show that z tends to 0. It follows
immediately that v*(h,&?) tends to vo. In order to apply the result,
we must show that the right side of (B.6), which we denote by k(z),
satisfies

() k(0)=0

(ii) k'(0) < 0
and |

(iii) K (w) = [’ k(s)ds < 0 if w € (0, vp].

Requirement (i) is immediate from the definition of vp. For (ii), note
that

K (2) = AR(1 + Bh) -D.
ST W+ Bh+Cup—Cz)¢
so that
K = AR(1 + BR) AR Do

(I+Bhi+Cw)? =~ “14+BhitCw

Finally, note that (iii) holds provided k(z) < 0 if 2z € (0,v). Since

Ah
k(Z) =‘(Uoﬁz)(1+Bﬁ+C’(vo—Z) ~D>

Ah
1+ Bh+ Cw
k(z) < 0, when z € (0,v) as required. Consequently (iii) holds and we

may apply Lemma 4.6 of Cantrell and Cosner [1989] to establish our
claim.

and
>D for w e (0,v),
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‘We conclude with a lemma which establishes the relationship between
the two eigenvalue problems which arise in our analysis.

Lemma B.4. Let A} (p(z)) be the positive principal eigenvalue of

~A¢ = Ap(z)p in§

(B-7) ¢=0 on 6%},

and let o(d,p(z)) denote the principal eigenvalue of

dAY +plz)p =0y in Q

(B8) P =0 on 0f1.

We have o1(d, p(x)) > 0 if and only if AT (p(z)) < 1/d and 1(d, p(z)) =
0 if and only if AT (p(z)) = 1/d.

Proor. The analogous result for the case of Neumann boundary
conditions is proved in Senn [1983]. The proof extends to the Dirichlet
case with only a few obvious modifications, see also Cantrell and Cosner
[1991], page 1049. We immediately obtain the following.

Corollary B.5. If o1(p,[AR(z)/(1 + Bh(z))] — D) > 0, then
alternative (i) in Theorem B.1 holds. If oy(u,[AR(z)/(1 + Bh(z))] —
D) <0, then alternative (ii) in Theorem B.1 holds.
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